Supporting Irregular Applications
with Partitioned Global Address

Space Languages: UPC and UPC++

Kathy Yelick

Lawrence Berkeley National Laboratory

With results from the DEGAS and UPC groups

Programming Challenges e

Message Passing Programming Global Address Space Programming
Divide up domain in pieces Each start computing

Each compute one piece Grab whatever you need whenever
Exchange (send/receive) data

Global Address Space Languages
PVM, MPI, and many libraries and Libraries

9-10% of NERSC apps use some kind of PGAS-like model pamat

BERKELEY LAB

Shared Memory vs. Message Passing

Shared Memory Message Passing

« Advantage: Convenience * Advantage: Scalability
-Can share data structures —Locality control
—-Just annotate loops —Communication is all
-Closer to serial code explicit in code (cost

- Disadvantages transparency)
~No locality control * Disadvantage
_Does not scale —Need to rethink data

structures

—Race conditions
-Tedious pack/unpack code

-When to say “receive”

PGAS: Partitioned Global Address Space

» Global address space: thread may directly read/write remote data
* Hides the distinction between shared/distributed memory
 Partitioned: data is designated as local or global
* Does not hide this: critical for locality and scaling

Global address space

-3
A
rrrrrrr |"'|

BERKELEY LAB

Science Across the “Irregularity” Spectrum

Massive Nearest All-to-All
Independent Neighbor Simulations access, large
Jobs for Simulations data Analysis
Analysis and
Simulations

NS Y
Data analysis and simulation

Hello World in UPC

* Any legal C program is also a legal UPC program

* [f you compile and run it as UPC with P threads, it will
run P copies of the program.

 Using this fact, plus the a few UPC keywords:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main () {
printf ("Thread %d of %d: hello UPC world\n",
MYTHREAD, THREADS) ;

Example: Monte Carlo Pi Calculation

» Estimate Pi by throwing darts at a unit square
 Calculate percentage that fall in the unit circle

—Area of square =2 = 1

—Area of circle quadrant = %4 * xt r? = /4
* Randomly throw darts at x,y positions
« If X2 + y2 < 1, then point is inside circle
« Compute ratio:

—# points inside / # points total

- 1 = 4"ratio

r =1

Piin UPC

* Independent estimates of pi:

main (int argc, char **argv) ({

int i, hits, trials = 0;

double pi;

Each thread gets its own
copy of these variables

atoi (argv[1l]);

else trials

if (arge != 2)trials = 1000000; |FEach threadcanuse

input arguments

srand (MYTHREAD*17) ;

Initialize random in
math library

pi = 4.0*hits/trials;

for (1=0; i1 < trials; i++) hits += hit();

printf ("PI estimated to 3%f.", pi);

Each thread calls “hit” separately

-3
A
rrrrrrr |'"|

BERKELEY LAB

Helper Code for Pi in UPC

* Required includes:
#include <stdio.h>
#include <math.h>
#include <upc.h>

* Function to throw dart and calculate where it hits:
int hit () {
int const rand max = OxFFFFFF;
double x = ((double) rand()) / RAND MAX;
double y = ((double) rand()) / RAND MAX;
if ((x*x + y*y) <= 1.0) {
return(l) ;
} else {
return (0) ;

-3
A
rrrrrrr |"'|

BERKELEY LAB

Shared vs. Private
Variables

Private vs. Shared Variables in UPC

« Normal C variables and objects are allocated in the private
memory space for each thread.

« Shared variables are allocated only once, with thread O
shared int ours; // use sparingly: performance
int mine;

» Shared variables may not have dynamic lifetime, i.e., may

not occur in a function definition, except as static.

Thread, Thread, Thread
(7))
)
o
T o ours: | Shared
© 0O
© @©
- Q : : :
g » mine: mine: eoeo mine:
9 Private
O

-3
A
rrrrrrr |"'|

BERKELEY LAB

Pi in UPC: Shared Memory Style

 Parallel computing of pi, but with a bug
shared int hits: shared variable to
record hits

main (int argc, char **argv) ({

int i, my trials = 0;

int trials = atoi(argv([1l]); divide work up evenly

my trials = (trials + THREADS - 1)/THREADS;

srand (MYTHREAD*17) ;

for (i=0; i < my trials; i++)

hits += hit () ;

upc_barrier;

if (MYTHREAD == 0) {
printf ("PI estimated to %£.", 4.0*hits/trials)

accumulate hits

.
4

} What is the problem with this program?

-3
A
rrrrrrr |'"|

BERKELEY LAB

___UPC Synchronization

« UPC has two basic forms of barriers:
— Barrier: block until all other threads arrive
upc_barrier
- Split-phase barriers
upc notify; this thread is ready for barrier

do computation unrelated to barrier
upc wait; wait for others to be ready

 UPC also has locks for protecting shared data:

- Locks are an opaque type (details hidden):
upc_lock t *upc global lock alloc(void);

— Critical region protected by lock/unlock:
void upc lock (upc lock t *1)
void upc _unlock (upc _lock t *1)
use at start and end of critical region =

BERKELEY LAB

Pi in UPC: Shared Memory Style

 Like pthreads, but use shared accesses judiciously
shared int hits; |one shared scalar variable

main (int argc, char **argv) {

int i, my hits, my trials = 0; |other private variables
upc lock t *hit lock = upc all lock alloc();
int trials = atoi(argvl|l]); create a lock
my trials = (trials + THREADS - 1)/THREADS;

srand (MYTHREAD*17) ;

for (i=0; i < my trials; i++) accumulate hits
my hits += hit(); locally

upc_lock (hit lock) ;

hits += my hits; accumulate

upc_unlock (hit_lock) ; across threads

upc_barrier;

if (MYTHREAD == 0)

printf ("PI: $f", 4.0*hits/trials);

-3
A
rrrrrrr |'"|

BERKELEY LAB

Pi in UPC: Data Parallel Style w/ Collectives

* The previous version of Pi works, but is not scalable:
- On a large # of threads, the locked region will be a bottleneck

« Use a reduction for better scalability

#include <bupc collectivev.h> Berkeley collectives

[/ no shared variables
main (int argc, char **argv) ({

for (i=0; i < my trials; i++)
my hits += hit();

my hits = // type, input, thread, op

bupc allv reduce(int, my hits, 0, UPC ADD) ;
[/ barrier implied by collective
if (MYTHREAD == 0)

printf ("PI: %f", 4.0*my hits/trials);

___Shared Arrays Are Cyclic By Default

» Shared scalars always live in thread 0
« Shared arrays are spread over the threads
« Shared array elements are spread across the threads

shared int x[THREADS] [* 1 element per thread */
shared int y[3] [THREADS] /* 3 elements per thread */
shared int z[3] [3] [* 2 or 3 elements per thread */

* In the pictures below, assume THREADS =4
-Blue elts have affinity to thread 0O

Think of linearized

C array, then map
X . in round-robin

¢ As a 2D array, y is
y . . . logically blocked
by columns
Z .‘—
. . Z is not

-3
A
rrrrrrr |'"|

BERKELEY LAB

Pi in UPC: Shared Array Version

« Alternative fix to the race condition
 Have each thread update a separate counter:
-But do it in a shared array

-Have one thread compute sum
shared int all hits [THREADS];
main (int argc, char **argv) {

all_hits is
shared by all

processors,
... declarations an initialization code omitted just as hits was

for (i=0; 1 < my trials; i++)
all hits[MYTHREAD] += hit () ;

upc_barrier;

if (MYTHREAD == Q) {

update element
with local affinity

for (i=0; i < THREADS; i++) hits += all hits[i];
printf ("PI estimated to %f£.", 4.0*hits/trials);

-3
A
rrrrrrr |'"|

BERKELEY LAB

Global Memory Allocation

shared void *upc _alloc(size t nbytes);

nbytes : size of memory in bytes

* Non-collective: called by one thread

« The calling thread allocates a contiguous memory space in the shared
space with affinity to itself.

shared [] double [n] p2 = upc alloc(n&sizeof (double) ;

" Thread, Thread, Thread,_
8893
© 5 3|| ndoubles [i| ndoubles n doubles Shared
) g 7

f

p2: A p2: (XX p2: / Private

void upc free (shared void *ptr);

« Non-collective function; frees the dynamically allocated shared
memory pointed to by ptr

-3
A
rrrrrrr |"'|

BERKELEY LAB

Distributed Arrays Directory Style

 Many UPC programs avoid the UPC style arrays in
factor of directories of objects

typedef shared [] double *sdblptr;

shared sdblptr directory[THREADS];

directory[i]=upc alloc(local size*sizeof (double));

1171|171 |directory

e e

physical and
* These are also more general: | conceptual
» Multidimensional, unevenly distributed ;L;Oafy
» Ghost regions around blocks oy
rrrrrrr |"'|

BERKELEY LAB

UPC Compiler Implementation

UPC-to-C translator

UPC code

C code

* Pros: portable, can use any
backend C compiler

« Cons: may lose program
information between the two
compilation phases

« Example: Berkeley UPC

UPC-to-object-code compiler

UPC code

Machine Instr.

* Pros: better for implementing
UPC specific optimizations

« Cons: less portable

« Example: GCC UPC and
most vendor UPC compilers

New in UPC 1.3 Non-blocking Bulk Operations

Important for performance:

« Communication overlap with computation

« Communication overlap with communication (pipelining)
 Low overhead communication

#include<upc _nb.h>

upc_handle t h =
upc_memcpy nb(shared void * restrict dst,
shared const void * restrict src,
size t n);
void upc_sync(upc handle t h); // blocking wait
int upc_sync_attempt(upc handle t h); // non-blocking

-3
A
rrrrrrr |"'|

BERKELEY LAB

One-Sided in GASNet

one-sided put message
address data payload ——* host
Py CPU
network
two-sided message Jec UL
message id data payload — memory

* A one-sided put/get message can be handled directly by a network
interface with RDMA support

- Avoid interrupting the CPU or storing data from CPU (preposts)

» A two-sided messages needs to be matched with a receive to
identify memory address to put data

- Offloaded to Network Interface in networks like Quadrics
- Need to download match tables to interface (from host)
- Ordering requirements on messages can also hinder bandwidth

-3
A
rrrrrrr |"'|

BERKELEY LAB

Why Should You Care about PGAS?

Latency between 2 Xeon Phi’s via Latency between 2 Intel lvyBridge
Infiniband nodes on NERSC Edison (Cray XC30)
30 10
- ==MPI| Send/Recv 77 s
<#=MPI_Send/Recv (Intel MPI) 77~ 9 = Zm
25 7 \ ==upc_memput / \
=0=ypc_memput / \ 8 ! '
] \ \
7% ' Vo \
3] 1 36 l
> 1 1 > 1
915 | 1 @5 H
3 ! /e !
3 10 \ ;5 /
\ / b 3
/e
/
5 _—/, E 2
e 1
0 : 0
~ N <t 00 © N < 60 © N < 0 © ~— N < 00 © N & 60 © N I O ©
~ M O AN IO «—~AN I O O - M O N O «— AN S O O
- N UL O O O - N IO O O O
~— N < ©© ~— N < ©o©
Size (bytes i N
(bytes) Size of Messages (bytes) 4 rrf,f}l

BERKELEY LAB

Bandwidths on Cray XE6 (Hopper)

18000

16000

14000

12000

10000

8000

Bandwidth (MB/s)

[=2]
(=
(=
o

4000

2000

=¢=Berkeley UPC

=@=Cray UPC

=i=Cray MPI

2048

8192
Msg. size

32768

>

frreeerer

A
i

Cray XE6 Application Performance

250%

[1256 procs

| I I 64 procs

200% >

40%

30%

20%

o
<
!

Q.
-
©
()
o
Q.
2]
a
=
—
(]
S
o
o
a
-
)
(@))
©
S
c
o
o
—
()

- ' sp bt Harmonic mean

Machine Challenge #3: Bisection Bandwidth

1100

T T - ‘\
@ core core core core core core core 1000 = (B:ggtnl\ljll(:r;u(xa?v\llza-l;(;vglha ESF)TW)
Node 0 | | Node1 gool-|[__ Best UPC (always pencils)]]
Process 0 Process 1

Interconnect ‘

' ' 800 - —
A/J 700 -
\§§ MSGs, // 600 [~
— Thread 0 Thread 1 Thread 2 Thread 3
b | T 500
400 -

300 -
v v
200 -
100
0

2

ek 6% © 56 A 56 A2
N\\;r\\’\e‘ \“"\n‘\aaﬂd 29 gland 2 gland 5 gland 2 gland 5

 Avoid congestion at node interface: allow all cores to communicate

* Avoid congestion inside global network: spread communication
over longer time period (start early, send often)

« Synchronize only when needed: sometimes fine-grained,
sometimes one global barrier (after all incoming counts are
reached) is best

1l = A
u iJ% DEGAS Overview f\ I

BERKELEY LAB

Application Challenge: Fast All-to-All

chunk = all rows with same destination

 Three approaches: X
e Chunk:

« Wait for 2" dim FFTs to finish
* Minimize # messages
 Slab:

» Wait for chunk of rows destined for 1
proc to finish

» Overlap with computation
* Pencil:
» Send each row as it completes
» Maximize overlap and
* Match natural layout

pencil =1 row

slab = all rows in a single plane with
same destination

-3
A
rrrrrrr ’"'|

U
Fﬁ Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea

FFT Performance on BlueGene/P

UPC implementation 30
outperforms MPI

3000

Both use highly 2500
optimized FFT library
on each node

UPC version avoids
send/receive
synchronization 1000

- Lower overhead
- Better overlap

- Better bisection
bandwidth

2000

GFlops

1500

500

—=Slabs

—#-Slabs (Collective)
—*—Packed Slabs (Collective)
=><MPI Packed Slabs

256 512 1024 2048 4096 8192 16384 32768
Num. of Cores

-3
A
rrrrrrr |"'|

BERKELEY LAB

UPC 1.3 Atomic Operations

* More efficient than using locks when applicable

upc_lock();
update(); VS atomic_update();
upc_unlock();

« Hardware support for atomic operations are available, but

Only support limited operations Atomic ops from different
on a subset of data types. e.g., processors may not be
atomic to each other
Atomic_CAS on\uirlt64_t C CPU)
)

M/er7nory Memory

Atomic_Add on double TT
(Nnc)

SR

Application Challenge: Random Access to Large Memory

« Expand the class of Exascale applications to those involving
random access to large “shared” memory

—Hash tables

- Graph algorithms
* Problems that currently “require” shared memory
« Genome assembly example

“Big Data” problems?

100 @ _ Contig 2:

90 s * ¢ Soil AACCG AacS
L 80 B Marine Contig 1: GATCTGA : /7
270 - Groundwater I@I
§ 60 - ©® Bioreactor
2] 50 &
8 40 .-
©
£ 30 up Contig 3:
S ig] . ‘0 - AATGC

*
0 | eemetts ¥t ihuIA **
10 20

0 30)
JGI pY Gbp sequenced BERKELEY LAB

HipMer (High Performance Meraculous) Assembly Pipeline

Distributed Hash Tables in PGAS

* Remote Atomics, Dynamic Aggregation
« Software Caching (sometimes)
» Clever algorithms (bloom filters, locality-aware hashing)

., overall time 16384 Soro overall time
iy, kmer analysis === | A M, Kmer ana|y.S|S snnefffuns
4096 fr. My, contig generation =ssess= 8192 |- e Mg, o contig generation -
L scaffolding e || Ry, _ scaffolding
2048 g S ideal overall time LI 4096 b R "',:.,,“““.' _ideal overall time s
o, Tt M, ."l' B, g
m 1024 g, Mt T 2048 ' P
oy R T L I .., e,
= 1024 o “hty
o 512 | I [Do 1
(8] -'., """" - .'.-.,.
3 ,,,,,,, B2 o g
256 [T ey, "B,
A."-.,..... ”I'l 256 ‘k"..'.'...'.'.." o o - o T T o - o - o e o .'.'..""l.'..
128 B Yag, ‘.. ‘H. .,......., T
........ sy D T
L ..,"nA ,,,,,,,,,,,,,,,,,,,,,,,, ..."'....
64 64 - e e - - - e "".‘..—.—. - - - - e e - -
...‘ ‘
32 o S I llfl!.*! --------------- 32 |) L, A
480 960 1920 3840 7680 15360 960 1920 3840 7680 15360
Number of Cores Number of Cores

A
reeeeee] M)

Oliker, Dan Rokhsar, and Kathy Yelick. HipMer: An Extreme-Scale De Novo Genome Assembler, SC’15

BERKELEY LAB

ﬂ Evangelos Georganas, Aydin Bulug, Jarrod Chapman, Steven Hofmeyr, Chaitanya Aluru, Rob Egan, Lenny

Led by Yili Zheng (LBNL)
with Amir Kamil (U Mich)

And host of others: Paul Hargrove,
Dan Bonachea, John Bachan,

DEGAS is a DOE-funded X-Stack with Lawrence Berkeley
National Lab, Rice Univ., UC Berkeley, and UT Austin.

-3
A
rrrrrrr ’"'|

DYNAMIC EXASCALE GLOBAL ADDRESS SPACE

UPC++: PGAS with “Mixins”

 UPC++ uses templates (no compiler s:16 || X 5// x: 7
needed) / y: | y:0
shared_var<int> s; | f
global ptr<LLNode> g; 18 '/ 5 - 63 + 27
shared_array<int> sa(8); /I \\
» Default execution model is SPMD, but S oL

« Remote methods, async

async(place) (Function f, T1 argl,..);
wait(); // other side does poll();

» Research in teams for
hierarchical algorithms and
machines

teamsplit (team) { ... }

* Interoperability is key; UPC++ can be use with OpenMP or MPI

~S
A
,,,,,,, A
| BERKELEY LAB

UPC++ Performance Close to UPC

GUPS (fine-grained) Performance on MIC and BlueGene/Q

MIC BlueGene/Q
Giga Updates Per Second Giga Updates Per Second
1.00 -
1.00 »
=P C++ =P C++ ndl
e 0.10 UPC r /r_/-
0.10 " rd
P S 0.01 i /L/_
> o ~
® A
0.01 ;
P~
0.00 -
r
0.00 — 0.00 — N <t 00 ©N<®OEO©NS 0 © N
1 2 4 8 16 32 60 TOONB AT DO
Num. of Processes Num. of Processes .

Difference between UPC++ and
UPC is about 0.2 us (~220 cycles)

-3
A
rrrrrrr ""|

BERKELEY LAB

Locality Control On-Node is Important

Optimizations:

 Blocked vs. cyclic (default) array layout

» Use private pointer to the thread block in shared array
double* my x = (double*)(x + MYTHREAD * BSIZE)

—_ dMP + no? mmap
UPC : : : : : : :
18_ _
UPC contig. : : : : ; ;

— UPC contig. + casts

7] I B @ S T e

Speedup relative to OMP(1)

T 0 6 12 18 24 30 36 42 48
rﬁ Threads

O 1 1 1

-3
A
rrrrrrr |"'|

BERKELEY LAB

Bulk Communication with One-Sided Data Transfers

// Copy count elements of T from src to dst
upcxx: :copy<T>(global ptr<T> src,
global ptr<T> dst,

size t count);

// Non-blocking version of copy

upcxx: :async_copy<T>(global ptr<T> src,
global ptr<T> dst,
size t count);

// Synchronize all previous asyncs
upcxx: :async_wait();

Similar to upc_memcpy_nb extension in UPC 1.3

Dynamic Global Memory Management

 Global address space pointers (pointer-to-shared)
global ptr<data type> ptr;

* Dynamic shared memory allocation
global ptr<T> allocate<T>(uint32_t where,
size t count);
void deallocate(global ptr<T> ptr);

Example: allocate space for 512 integers on rank 2
global ptr<int> p = allocate<int>(2, 512);

Remote memory allocation is not
available in MPI-3, UPC or SHMEM.

Async Task Example

#include <upcxx.h>

void print_num(int num)

{
printf(“myid %u, arg: %d\n”, MYTHREAD, num);
}
int main(int argc, char **argv)
{
for (int 1 = 0; i < upcxx::ranks(); i++) {
upcxx: :async(i)(print_num, 123);
}
upcxx: :async_wait(); // wait for all remote tasks to complete
return 9;
}

~S
A
3 8 r:‘}I |'"|

BERKELEY LAB

Async with C++11 Lambda Function

for (int i = 0; 1 < upcxx::ranks(); i++) {
// spawn a task expressed by a lambda function
upcxx::async(i)([] (int)
{ printf("num: %d\n”,);),
); // argument to the A function
}

upcxx::async_wait(); // wait for all tasks to finish

mpirun —n 4 ./test_async

Output:

num: 1000 Function arguments and lambda-
num: 1001 captured values must be

num: 1002 std::is_trivially _copyable.

num: 1003

-3
A
rrrrrrr ""|

BERKELEY LAB

Application Challenge: Data Fusion in UPC++

Dlstrlbuted Matrix Assembly
Remote asyncs with user-
controlled resource management

low-velocity

N Frgers Remote memory allocation
a— Deep - Team idea to divide threads into
mantle = =
\‘—' T t injectors / updaters

conduits

6x faster than MPI 3.0 on 1K nodes

« Seismic modeling for energy applications 9 Improving UPC++ team support

“fuses” observational data into simulation

« With UPC++, can solve larger problems 100 Jei e R Note
: scale:
Bl >85%
/. , efficie
- VOO0 ntin
5 . . . worst
© 585 —— feicoc - RRRERE SRR 1 case
/. E § =e N =1l.1le5
S E80lm=a N =225 ...
AW v N =825
75 i i i
Cores: 48 192 768 3K 12K
French and Romanowicz use code with UPC++ phase to compute whole-mantle global tomographic model

using numerical seismic wavefield computations (F & R, 2014, GJI, extending F et al., 2013, Science). See F et al,
IPDPS 2015 for parallelization overview.

40 o

BERKELEY LAB

Multidimensional Arrays in UPG++ (and Titanium)

« Titanium arrays have a rich set of operations

=

translate restrict slice (n dim to n-1)

* None of these modify the original array, they just create
another view of the data in that array

* You create arrays with a RectDomain and get it back
later using A.domain() for array A
— A Domain is a set of points in space
— A RectDomain is a rectangular one

* Operations on Domains include +, -, * (union, different

intersection)
March 5, 2004

Arrays in a Global Address Space for AMR -—

5h
N

ul

« Key features of UPC++ arrays
— Generality: indices may start/end and any point

- Domain calculus allow for slicing, subarray, transpose and
other operations without data copies

 Use domain calculus to iterate over interior:

foreach (idx, .shrink (1) .domain ())

 Array copies automatically work on intersection
.copy (gridA.shrink (1)) ;

___________ [. | intersection (copied
“restricted” (non- : | _|-area)
ghost) cells 4| Useful in grid
T computations
= including AMR
ghost — gridA gridB g

cells
UPC++ arrays based on Titanium Arrays |

BERKELEY LAB

Mini-GMG in UPC++ uses high level array library
for Productivity and Performance

miniGMG Weak Scaling on Edison (Cray XC30)

miniGMG proxy for Multigrid 25 S
solver in combustion, etc. 20 = %= Bulk
? == Fine-grained
:: 15 =—@— Array
£
= 10 =0
3 ——
o 5
n
0 Bulk performance
6 48 384 3K 25K
cores
ﬁg”de . ” Stride N2
= - 2 =T 7 - - L]
T —=||} Stide « “Fine-grained” like OpenMP
I == (|2 - “Bulk” like MPI with 1-sided
e J==P communication;

« “Array” version uses multi-
dimensional array constructs for
productivity and ~MPI performance

* Future runtime optimizations
should close Array/Bulk gap

| DEGAS 43 e
- QERRETEVEAD

UPC++ arrays are convenient and optimize
strided data accesses automatically

NWChem on GASNet

o

* New version on GASNet for

2500 -
— Improved performance 5
T " [+})
— Portability with other PGAS 2, .
Q
E
NWChem fg 1500
2
§1ooo

MPI + {portals, ofa, dmapp}

armci
- 500

* Production chemistry code
-60K downloads world wide
-200-250 scientific application

publications per year
—-Over 6M LoC, 25K files

credit:nwchem-sw.org 3000 -+

=$=GA over GASNET
==GA base version

e

0 512 1024 1536 2048
Cores

BERKELEYIL

Application Challenge: Dynamic Load Balancin

- Static: Equal size tasks Regular meshes, dense
: : : matrices, direct n-body
- Semi-Static: Tasks have Adaptive and unstructured

different but estimable times meshes, sparse matrices, tree-
based n-body, particle-mesh

QQQ Q 0 methods

* Dynamic: Times are not

known until mid-execution Search (UTS), irregular
boundaries, subgrid physics,

unpredictable machines
006@ o
Dynamic (on-the-fly) useful when:

Load imbalance penalty > communication to balance
Load balancing can’t solve lack of parallelism

-3
A
rrrrrrr |"'|

BERKELEY LAB

Application Challenge: Dynamic Load Balance

Global address space 1

Multidimensional r
_arrays
Bt

4

g

Local @ 0.1
task: - . 1 1 N’ 1 =
g e | 3
queue Wl aaaat’ B 1O A g
1 HOECHR) 1 HEEE g

u Foo 1 BAEES 5 001

1 o .

! 5 :

38 ‘ - /
é ; % § % % % ; g 0.001 T T T T T T T T
2 o Bz, e % s, 058,77,

Total cores

) —+— UPC++ —*— HabaneroUPC++
Multi-threading

(a) SampleSort

1e+06

« Dynamic tasking option in UPC++
- Demonstrated with library version
of Habanero

— Combines with remote async

100000 /
10000 /
1000

V

Performance (FOM z/sec)

- Dynamic load balancing library for : u 26 on
domain-specific runtime in UPC++ UGk —— HabaneroUPCH+
(b) LULESH
Uﬁ} 46 DEGAS Overview Rl

Beyond Put/Get: Event-Driven Execution

 DAG Scheduling in a distributed (partitioned) memory context
« Assignment of work is static; schedule is dynamic
» Ordering needs to be imposed on the schedule
— Critical path operation: Panel Factorization
» General issue: dynamic scheduling in partitioned memory

— Can deadlock in memory allocation

- “memory constrained” lookahead _
Uses a Berkeley extension to

UPC to remotely synchronize

= I
Lol .
. []
mC L]
some edges omitted

= A
i | fﬁ A
= 4

BERKELEY LAB

Example: Building A Task Graph

using namespace UpCcxX;
event el, e2, e3;

async(P1, &e1)(task1);
async(P2, &e1)(task2);
async_after(P3, &e1, &e2)(task3);
async(P4, &e2)(task4);
async_after(P5, &e2, &e3)(taskd);
async_after(P6, &e2, &e3)(tasko);
async_wait(); // all tasks will be done

One-sided communication works everywhere

PGAS programming model

*pl = *p2 + 1;
A[i] = B[1];

upc_memput (A,B, 64) ;

B DALLAS A

H H . . Moy
It is implemented using one-sided b
communication: put/get

Support for one-sided communication (DMA) appears in:

» Fast one-sided network communication (RDMA, Remote
DMA)

 Move data to/from accelerators
* Move data to/from I/O system (Flash, disks,..)

Movement of data in/out of local-store (scratchpad) mem ;i»m

BERKELEY LAB

Hierarchical machines and Applications

- Hierarchical memory

gf%%% . (What {0 expose va hide)

- Two approaches to
hierarchical control

« Option 1: Dynamic parallelism creation
- Recursively divide until... you run out of work (or hardware)
- Runtime needs to match parallelism to hardware hierarchy
* Option 2: Hierarchical SPMD with “Mix-ins” (e.g., UPC++)
- Hardware threads can be grouped into units hierarchically
— Add dynamic parallelism with voluntary tasking on a group
- Add data parallelism with collectives on a group

Summary

« UPC is a mature language with multiple implementations
—-Cray compiler
—gcc version of UPC: hiip://www.gccupc.org/
—-Berkeley compiler: http://upc.lbl.gov

« Language specification and other documents
https://code.google.com/p/upc-specification
https://upc-lang.org

« UPC++
-Newer “language” under development
—-Adds dynamic parallelism on top of SPMD default
-Powerful Multi-D arrays
—Hierarchical parallelism mapped to machine

LBNL / UCB Collaborators

Yili Zheng

Amir Kamil*

Paul Hargrove

Eric Roman

Dan Bonachea*
Khaled Ibrahim

Costin lancu

Michael Driscoll
Evangelos Georganas
Penporn Koanantakool
Steven Hofmeyr*
Leonid Oliker

John Shalf

*Former LBNL/UCB

Erich Strohmaier
Samuel Williams

Cy Chan Thanks!
Didem Unat*

James Demmel
Scott French
Edgar Solomonik*
Eric Hoffman*
Wibe de Jong

External collaborators (& their teams!)

Vivek Sarkar, Rice
John Mellor-Crummey, Rice
Mattan Erez, UT Austin

>

, \

BERKELEY LAB

